Many computer applications require that the computer be able to communicate with the real world in a manner not possible with keyboard, printer, or modem. Tasks such as laboratory data collection or industrial process control are possible only if the digital world of the computer can be interfaced in real time to the analog world of temperatures, weights, voltages, etc. If a computer can be set up to sense and control analog processes, its calculation and storage capabilities can be put to excellent use in many situations. The Lab Master, manufactured by Tecmar, provides just such an interface for the IBM PC or XT. In addition to its analog-to-digital (a/d) and digital-to-analog (d/a) capabilities, the Lab Master provides counting, timing, and digital input/output features, all of which make up a sophisticated and powerful interface.

Let's take a look at the Lab Master. It consists of a full-size mother board (see figure 1) that is plugged into one of the PC's slots, plus a metal box (approximately 10"x2"x6") containing the daughter board, which is connected to the mother board by a 50-conductor ribbon cable about 3 feet long. A/d conversions are performed on the daughter board, while all other functions are handled on the mother board. This arrangement has the advantage of allowing the a/d converter to be located near the source of the signal and outside the electrically noisy environment of the PC's cabinet (the ribbon cable between the mother and daughter boards can be greatly extended.

Packed into the mother and daughter boards are sixteen single-ended or eight differential a/d channels, two d/a channels, five to sixteen bit timers/counters, and twenty-four digital input/output lines.

ANALOG-TO-DIGITAL CONVERTER

The Lab Master's standard a/d converter has a rated maximum conversion rate of 30KHz, although mine operates at 40kHz with complete reliability. The full-scale input range is jumper selectable for 0 to +10v or -10 to +10v, it is a 12-bit converter, meaning that its resolution is one part in 2^12, or 1/4096 of the full-scale range. This means, for example, that an input signal of 0 to +10v will be measured with an accuracy of approximately 0.0025v.

The a/d converter has an autoincrementing feature that can free the software from the necessity of specifying the input channel to convert for each conversion. When autoincrementing is enabled (via a software command), the a/d converter will automatically cycle between a starting channel (specified by software) and a final channel (set with a DIP switch on the daughter board).

In addition to its input range, several other operating parameters of the a/d converter must be selected by installing jumpers over pins on the daughter board. These parameters include single-ended or differential inputs, output data format (two's complement or binary), and others, covered in the instruction manual.

There are a number of extra-cost a/d options available, expansion to 256 input channels, software-programmable gain up to 50; hardware-selectable (via a resistor placed on the daughter board) gain up to 2000, 14- or 16-bit conversion accuracy; and 100kHz maximum conversion rate. Some of these options are mutually exclusive, however, 14 and 16 bit converters are limited to maximum...
conversion rates of 10 and 2.5 kHz, respectively. In addition, input gains greater than 10 require that a capacitor be placed on the daughter board to allow for longer amplifier settling times. This reduces the maximum conversion rates, e.g., 20 kHz at a gain of 100 and 3.8 kHz at a gain of 1000.

CONVERTERS AND TIMER/COUNTER

The Lab Master has two independent d/a converters (DAC80s). Each converter has a 12-bit input, 5-microsecond settling time, and jumper selectable output ranges of -2.5 to $+2.5$, -5 to $+5$, -10 to $+10$, 0 to $+5$, or 0 to $+10$ volts.

The Lab Master's timing and counting functions are provided by an AM9513 LSI chip. This is an extremely sophisticated chip that can provide almost any conceivable timing or counting function, if the required programming can be figured out. It consists of five general-purpose 16-bit counters, frequency dividers, and a variety of special-purpose registers. Some of the tasks that can be accomplished with this chip are the time of day, an external-event counter, and the generation of complex timing patterns.

The 9513 is accessed through only two ports: a data port and a control port. Inside the 9513 are, by my count, 20 control and data registers that must be accessed through these two ports (see figure 2). This is done by sending a command specifying one of the internal registers, and then sending a read or write command. This system works, but it leads to some rather complex programming.

PARALLEL PORTS

There are twenty-four parallel digital input/output lines on the Lab Master, provided by an Intel 8255. These lines can be programmed as groups of eight or as groups of twelve. There are three modes of operation available: three input or output ports, two input or output ports with handshaking, or a bidirectional I/O port with handshaking (see table 1).

INTERRUPTS

An interrupt allows the processor to respond to a signal from an external device without having to constantly check ("poll") to see if the signal has been sent. When a signal is received on an interrupt line, the processor saves the relevant information about its current task and then executes a series of software instructions located at a predetermined memory location. These instructions, called an interrupt handler, perform the tasks needed to "service" the interrupt, and the processor then resumes the task that was interrupted.

Peter Aitken is a research associate in the Department of Physiology at the Duke University Medical Center, Durham, NC. His PC-aided research involves the use of animal models for the study of epilepsy.
conversion rates of 10 and 2.5 kHz, respectively. In addition, input gains greater than 10 require that a capacitor be placed on the daughter board to allow for longer amplifier settling times. This reduces the maximum conversion rates: e.g., 20kHz at a gain of 100 and 3.8 kHz at a gain of 1000.

Converters and Timer/Counter

The Lab Master has two independent d/a converters (DAC80s). Each converter has a 12-bit input, 5-microsecond settling time, and jumper selectable output ranges of −2.5 to +2.5, −5 to +5, −10 to +10, 0 to +5, or 0 to +10 volts.

The Lab Master’s timing and counting functions are provided by an AM9513 LSI chip. This is an extremely sophisticated chip that can provide almost any conceivable timing or counting function, if the required programming can be figured out. It consists of five general-purpose 16-bit counters, frequency dividers, and a variety of special-purpose registers. Some of the tasks that can be accomplished with this chip are the time of day, an external-event counter, and the generation of complex timing patterns.

The 9513 is accessed through only two ports: a data port and a control port. Inside the 9513 are, by my count, 20 control and data registers that must be accessed through these two ports (see figure 2). This is done by sending a command specifying one of the internal registers, and then sending a read or write command. This system works, but it leads to some rather complex programming.

Parallel Ports

There are twenty-four parallel digital input/output lines on the Lab Master, provided by an Intel 8255. These lines can be programmed as groups of eight or as groups of twelve. There are three modes of operation available: three input or output ports, two input or output ports with handshaking, or a bidirectional I/O port with handshaking (see table 1).

Interrupts

An interrupt allows the processor to respond to a signal from an external device without having to constantly check (“poll”) to see if the signal has been sent. When a signal is received on an interrupt line, the processor saves the relevant information about its current task and then executes a series of software instructions located at a predetermined memory location. These instructions, called an interrupt handler, perform the tasks needed to “service” the interrupt, and the processor then resumes the task that was interrupted.

Peter Aitken is a research associate in the Department of Physiology at the Duke University Medical Center, Durham, NC. His PC-aided research involves the use of animal models for the study of epilepsy.
LAB MASTER

Figure 1: Block Diagram of Lab Master Mother Board. (Reprinted from the Tecmar Lab Master Board manual by permission of Tecmar Inc.)

And, in addition to the IBM PC, Smartcom II is also available for the DEC Rainbow™ 100, Xerox 820-II™ and Kaypro II™ personal computers.

Backed by the experience and reputation of Hayes. A solid leader in the microcomputer industry, Hayes provides excellent documentation for all products. A limited two-year warranty on all hardware. And full support from us to your dealer.

CIRCLE NO. 158 ON READER SERVICE CARD

Smartmodem 100, Smartmodem 1200, and Smartcom II are trademarks of Hayes Microcomputer Products, Inc. IBM is a registered trademark of International Business Machines Corp. Touch Tone is a registered service mark of American Telephone and Telegraph. Rainbow is a trademark of Digital Equipment Corporation. Xerox 820-II is a trademark of Xerox Corporation. Kaypro II is a registered trademark of Nor-Linco Systems, Inc.

© 1983 Hayes Microcomputer Products, Inc.

The Lab Master allows access to interrupt lines 2 through 7 in the PC and permits interrupts to be generated by the a/d converter, timer, or parallel ports. Thus, as many as six interrupt service routines can be in place at one time. Interrupt sources are joined to interrupt lines with jumpers on the mother board.

The interrupt feature can be extremely useful. For example, imagine an application requiring that an a/d conversion be done once per second over a long period. The Lab Master
LAB MASTER

could be configured so that one of the clocks caused an interrupt once per second, jumping to an interrupt-handler routine that initiated an a/d conversion and stored the data in memory. Since this task would require only a few milliseconds out of each second of the computer's time, the computer can be busy with another task—such as data processing or program editing—with the time spent collecting data not even noticed by the operator.

Some confusion may result from the fact that the IBM PC interrupt lines (IRQ2 through IRQ7) are numbered differently from the 8086's interrupt types: the PC's interrupt line IRQ2 is not an 8088 type-two interrupt. This fact is not mentioned in the Lab Master manual, but a call to Tecmar revealed that the 8088 interrupt type is the IRQ number plus eight, and the vector table address for a given interrupt type is equal to the interrupt type times four. Thus, a signal on IRQ line five will generate a type-13 interrupt, causing a jump to the interrupt-service routine whose starting address is stored in the interrupt vector table at memory locations 00034H (instruction pointer) and 0003H (code segment). See The 8086/8088 Primer by S. P. Morse (Hayden Book Co., 1982).

PROGRAMMING

The Lab Master may be configured in a memory mapped or an I/O mode. In the memory mapped mode, it appears to the computer as 16 consecutive memory locations; in the I/O mode it appears as 16 consecutive I/O ports. The board comes from the factory in the I/O mode with starting address 0710H. These 16 ports are the computer's means of communicating with the Lab Master; through them, data and status can be input from the board and control commands can be output to the board. Only two software commands are needed to use the Lab Master; in BASIC, these are INP and OUT (for the I/O mode) or PEEK and POKE (for the memory mapped mode).
KEDIT
Mainframe Editing Power (and more) $85

Announcing KEDIT, the most powerful full-screen text editor yet for the IBM PC. It provides facilities normally found only on mainframe computers and extends these facilities to take full advantage of the PC's keyboard, display, and dedicated processing power. Your PC will finally be equipped to handle the most advanced editing applications.

- edit up to 15 files at once
- multiple display windows show you up to 4 files at once
- block move and copy, even between files
- sophisticated string search and change
- wordwrap
- paragraph reformating and justification
- all keys fully reprogrammable with any combination of over 60 special functions
- DOS directory display

XEDIT Compatibility

KEDIT is compatible with most XEDIT capabilities, including:

- targets
- ARBCHAR
- RECOVER
- SCHANGE
- named lines
- GETFILE
- SORT

KEDIT requires:

IBM PC or XT / DOS 1.0, 1.1, or 2.0 / 80 column display
128K (180K preferred with DOS 2.0)

For immediate shipment of KEDIT send a check/money order for $85, ($85 after April 1st) plus $3 shipping. CT residents add 7.5% sales tax. For more information call 203/429-8402.

Demonstration disk available for $10.

Mansfield Software Group, Box 532 / Storrs, CT 06268

BASIC? IF YOU USE IT, YOU NEED BDS!

The BASIC Development System (BDS) is an integrated set of software tools that will greatly increase your programming efficiency and productivity. BDS is co-resident with the interpreter to support BASIC'S interactive philosophy. You never need to save programs in ASCII and leave BASIC to perform any BDS function. Written entirely in machine language for MAXIMUM SPEED in minimum space, BDS provides the following features:

- **SCROLLING KEYS** - Allow you to instantly list the first, last, current, previous, or next program line. Now you can quickly scan through a program to locate the lines you want to modify.
- **SINGLE STEP TRACE** - Pauses before executing each new line and waits for keyboard input to continue. The line number is placed in the upper-right corner of the screen so it doesn't interfere with program displays. You may break out of this trace mode at any time to examine variables, then CONTINUE tracing. Makes it easy to follow the program logic and catch those hard-to-find bugs.
- **CROSS-REFERENCE** - The indispensable debugging tool. Provides a sorted list of every BASIC keyword, numeric and string constant, line number, and variable name used in the program and shows where each item is referenced. After a single item is referenced, each line containing the reference can be automatically displayed on a line for easy viewing and/or modification.
- **SUPER RENUM** - Gives you all the features that the RENUM command leaves out. Renumber, relocate, or duplicate any block of program lines without affecting other portions of the program.
- ** VARIABLE DUMP** - A single command will list any or all program variables, along with their current values. Each array element is listed separately. This is a powerful debugging tool, especially when used with SINGLE STEP TRACE.
- **COMPRESS** - Reduces the program size to an absolute minimum. Leaves more space for variables and string data and increases execution speed.
- **UNCOMPRESS** - Expands a compressed program to make it more readable.

BASIC DEVELOPMENT SYSTEM (BDS) $79

DISASSEMBLY CROSS-REFERENCE SYSTEM (DCRS) $49

TRY IT! You'll like it, or your MONEY BACK. If you are not satisfied for any reason, return the product within 30 days for a full refund.

TO ORDER NOW, CALL (303) 793-0145

All products require a 64K IBM PC (or XT), one disk drive and PC-DOS 1.10 or 2.00

Add $3.00 for shipping and handling

8072 E Hampden Ave • Suite 179
Denver, Colorado 80237

LAB MASTER

Table 1: Tecmar Lab Master Port Assignments

<table>
<thead>
<tr>
<th>STARTING ADDRESS</th>
<th>READ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>low 8 bits for D/A = 0</td>
</tr>
<tr>
<td>1</td>
<td>the low 4 bits of this byte are the high 4 bits for D/A = 0</td>
</tr>
<tr>
<td>2</td>
<td>low 8 bits for D/A #1</td>
</tr>
<tr>
<td>3</td>
<td>the low 4 bits of this byte are the high 4 bits for D/A #1</td>
</tr>
<tr>
<td>4</td>
<td>status byte - individual bits indicate status of certain board functions</td>
</tr>
<tr>
<td>5</td>
<td>Low A/D data byte A/D channel number to convert</td>
</tr>
<tr>
<td>6</td>
<td>High A/D data byte Software start conversion - writing anything to this location initiates an A/D conversion.</td>
</tr>
<tr>
<td>7</td>
<td>Timer interrupt acknowledge</td>
</tr>
<tr>
<td>8</td>
<td>Read data port of 9513 Write to data port of 9513</td>
</tr>
<tr>
<td>9</td>
<td>Read control port of 9513 timer Write to control port of 9513 timer</td>
</tr>
<tr>
<td>10</td>
<td>* *</td>
</tr>
<tr>
<td>11</td>
<td>* *</td>
</tr>
<tr>
<td>12</td>
<td>Parallel port A input Parallel port A output</td>
</tr>
<tr>
<td>13</td>
<td>Parallel port B input Parallel port B output</td>
</tr>
<tr>
<td>14</td>
<td>Parallel port C input Parallel port C output</td>
</tr>
<tr>
<td>15</td>
<td>* Parallel port control byte</td>
</tr>
</tbody>
</table>

*means not used
Lab Master

The 8088 uses an 8-bit data path, yet there are times when 12, 14, or 16 bits of data must be sent to or received from the Lab Master. Such transfers require two commands, one to transfer the lower 8 bits and one to transfer the higher 8 bits. Thus, for example, to input a value from the a/d converter the following steps must be taken (assuming that the Lab Master is I/O-mapped at starting address 0710H and is jumpered for a -10 to +10v input range and two's complement data).

90 REM—start a conversion
100 OUT 0716H,0
110 REM—bit 7 of status byte set (i.e., conversion done)?
120 IF INP(0714H) THEN 120
130 REM—not get the data
140 LOW.DATA = INP(0715H)
150 HI.DATA = INP(0716H)
160 REM—convert from two's complement to a voltage -10 to +10
170 VOLTS = (256*HI.DATA) + LOW.DATA
180 VOLTS = VOLTS/204.8

When programming in assembly language, the two necessary byte transfers can be accomplished with one IN or OUT command.

The Manual
The installation and instruction manual for the Lab Master is sized to fit in one of IBM's binders. In general, it is clear and complete, although there are areas in which more information would be welcome (e.g., on programming interrupts). Several sample programs (all in BASIC) are provided. The main weak point of the manual is the section on the 9513 timer/counter. As mentioned above, this device is rendered somewhat difficult to program by its two-port configuration and by the complexity of the functions available. The manual seems to provide all the needed information, but it is hard to understand. Particularly helpful here would be a number of sample programs for setting up the 9513 to do a variety of the common tasks.

CopyWrite
backs up all
IBM PC Software.

There are no exceptions. Copy-protected software is copied readily. CopyWrite needs no complicated parameters.

Requirements:
IBM Personal Computer or XT.
64K bytes of memory.
one diskette drive.
CopyWrite will run faster with more
memory or another drive.

CopyWrite is revised monthly, to keep up with the latest in copy protection. You may get a new edition at any time for a $12 trade-in fee.

CopyWrite is available at a price of $50 US funds from:

Quaid Software Limited
620 Jarvis Street, Suite 2412
Toronto, Ontario, Canada M4Y 2R8
Telephone (416) 961-8243
THE TOWER OF BABEL CONQUERED!

Direct Disk-to-Disk File Transfer with Xeno-Copy PLUS

In the Old Testament, ambition and pride resulted in the Tower of Babel where no one could speak the same language. In Modern Times, the microcomputer industry achieved the same result without divine intervention. But you can conquer the Tower of Babel with Xeno-Copy PLUS. Your PC can read and write 50 disk formats. Suddenly, all those different computers can talk to your PC, and to each other, without modems, serial links or additional hardware. All you need is the disk.

No modern madness with Xeno-Copy PLUS! Just insert a "foreign" disk into your PC's drive, view the directory, select the desired files and make the copies—fast (16K well under 1 min.). Transfer program and data files between computers. For example, import a TRS-DOS file to your PC disk, then export the file by writing it to a Kaypro II disk. Imagine the flexibility!

Xeno-Copy PLUS supports most double-density CP/M (80 & 88) formats, TRS-DOS, p-System, NEC-DOS, Turbodisc and others. "ADVANCED" option adds 96 TPI and single-density formats (with compatible hardware), plus the ability to handle extra formats when you enter the individual disk parameters.

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xeno-Copy</td>
<td>Read foreign disks to import files</td>
<td>$99.50</td>
</tr>
<tr>
<td>Xeno-Copy PLUS</td>
<td>Read AND write 50 foreign disk formats</td>
<td>$149.50</td>
</tr>
<tr>
<td>Advanced Option</td>
<td>96 TPI, single-den., enter disk parameters</td>
<td>add $50.00</td>
</tr>
</tbody>
</table>

Xeno-Copy PLUS runs under DOS on the IBM PC/XT, Compaq, and most other compatibles with 128K memory. Also available for DEC Rainbow, VT100 and other selected computers. PC Jr. available soon. Ask about new formats, features and hosts.

TURN YOUR PC INTO A DISK PRODUCTION MACHINE FOR $379.50

Are you a software developer, small publisher or responsible for different computers in your organization? Do you need to produce different disk formats, but can't afford solutions that cost $1,500, $5,000, $10,000 or even more? Forget the big bucks! For $379.50, the Xeno-DISK Software Development System allows you to import and export disk files plus initialize blank disks in foreign formats. Also includes fast foreign disk duplicator and text/data filters. No... it won't replace one of those big expensive machines... yet.

THE ORIGINAL KEYFIXER™

No one else can imitate our unique "hole in the middle design" which DOES NOT INCREASE KEY HEIGHT over other keys. Precision molded to fit ENTER, both SHIFT keys, TAB, BACKSPACE and others. Increase keyboard accuracy and reduce fatigue while retaining that "IBM original equipment" look. Thousands of others already have! A SET OF FIVE is only $14.95.

LAB MASTER

PERFORMANCE

The Lab Master in this laboratory has been in fairly constant use for almost a year now. We have used most of the functions, and, with one exception, the Lab Master has performed perfectly. This one exception involves the 9513 timer chip; occasionally (perhaps once in 300 tries) the chip would not obey a software command to start a clock running. The people at Tecmar felt that this problem was internal to the 9513 itself, and they sent me a replacement chip. Installing the new 9513 reduced the problem (to about 1 failure in 2000 tries), but did not completely solve it. I got around this problem by having my programs send the "start clock" command twice.

SOFTWARE

According to the advertising literature, Tecmar's LABPAC, a package of software routines written for the Lab Master, will provide "a library of powerful real-time facilities [which will] permit the user to write programs in BASIC, FORTRAN, PASCAL, or Macro assembler using LABPAC commands as though they were part of the program itself." Included will be analog input, analog output, timing, digital input and output, and graphics. Unfortunately, this software is not currently available.

CONCLUSIONS

Tecmar's Lab Master board provides a powerful, flexible interface for the IBM PC. At present, however, it is not supported by software. Until the LABPAC package becomes available, the Lab Master should be considered only when the requisite programming skills are available. In such situations, the Lab Master should function admirably—in fact, we have found it so valuable that we are buying another identical system.

TECMAR INC.
6225 Cochran Road
Cleveland, Ohio 44139
216-349-0600
Circle 498 on Reader Service Card

PC TECH JOURNAL